Intelligence Artificielle : Apprentissage Profond/Deep Learning

Tarifs

1625 €

Durée

3 jours (21 heures de cours en présentiel)

Dates

Référence DAE25-1117A :
du 04/06/2025 au 06/06/2025

Lieu de la formation

Pôle API

Bd Sébastien Brant,
67400 Illkirch Graffenstaden
France

Renseignements & inscriptions

Diane ABELÉ 03 68 85 49 30

Sauf le vendredi après-midi

Accueil des personnes en situation de handicap

Le Service de la vie universitaire – Mission handicap propose un dispositif d’accueil et d’accompagnement spécifique pour permettre aux personnes en situation de handicap de se former dans les meilleures conditions possibles. Pour en savoir plus

Toute demande d’adaptation peut être étudiée en amont de la formation, en fonction du besoin.

Merci de vous adresser au correspondant handicap du SFC :
Françoise Boutigny

Certifications & Homologation

Vos interlocuteurs

Présentation et Points forts de la formation

Cette formation fait partie d’une offre globale comprenant également les formations “Intelligence Artificielle et Sciences des Données : Défis et Concepts” et “Intelligence Artificielle et Science de Données : Approche pratique”. Ensemble, elles offrent une vue complète et approfondie de l’intelligence artificielle et des sciences des données.

– Découverte des techniques au cœur de la révolution IA 

– Utilisation de librairies et d’outils récents

– Une équipe pédagogique dynamique utilisant ces outils quotidiennement

Personnes concernées
expand_more

Toute personne intéressée pour découvrir, approfondir et mettre en œuvre les méthodes modernes de deep learning dans le contexte de la vision par ordinateur : ingénieur, développeur, traiteur d’images, data scientist, chercheur, chef de projet informatique, consultant en informatique.

Compétences à l'issue de la formation
expand_more
  • Pré-traiter les données pour les rendre compatibles avec des algorithmes d’apprentissage
  • Identifier le besoin de faire de l’apprentissage profond ou non
  • Choisir et de mettre en œuvre un réseau neuronal adapté au problème visé
  • Comprendre les différents hyper-paramètres d’un réseau neuronal ainsi que leurs impacts sur l’apprentissage du réseau
  • Implémenter un réseau en Tensorflow 2.x
  • Créer sa propre couche ou fonction de coût
Programme
expand_more

– Réseaux de neurones et réseaux de neurones convolutionnels

– Entraînement des réseaux, rétro-propagation du gradient

– Fonctions de coût, fonctions d’activation

– Architectures classiques

– Transfert d’apprentissage

– Architectures pour certaines applications (classification, segmentation, détection)

– Visualisation et analyse des réseaux

– Préparation et augmentation de données

Cette formation peut être adaptée et certains aspects approfondis en fonction des besoins. 

pré-requis
expand_more

La connaissance des fondamentaux de l’apprentissage par ordinateur (classification supervisée), de la programmation, des bases du langage Python sont conseillées, mais pas indispensables.

La participation à cette formation ne nécessite pas de pré-requis complémentaires.

Méthodes et ressources pédagogiques
expand_more

Alternance de cours et de travaux pratiques.

Exercices avec Jupyter Lab et TensorFlow 2.x

Responsable scientifique
expand_more

M. Baptiste LAFABRÈGUE, Maître de conférences, Université de Strasbourg

Courriel : lafabregue@unistra.fr

Nature et sanction de la formation
expand_more

Cette formation constitue une action d’adaptation et de développement des compétences.Elle donne lieu à la délivrance d’une attestation de participation.Une évaluation en fin de formation permet de mesurer la satisfaction des stagiaires ainsi que l’atteinte des objectifs de formation (connaissances, compétences, adhésion, confiance) selon les niveaux 1 et 2 du modèle d’évaluation de l’efficacité des formations Kirkpatrick.

Vous êtes une organisation et souhaitez une proposition intra pour cette formation ?

Vous êtes une organisation et souhaitez un accompagnement dans la construction de votre projet sur-mesure.

Evaluation des formations

Toutes nos formations sont évaluées selon les niveaux 1 et 2 du modèle d'évaluation de l'efficacité des formations Kirkpatrick.
Moyenne des évaluations pour les stages courts en 2023.*

stages inter et intra

83 % de satisfaction
91 % de recommandation

*Taux de retour de 50,70%